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Abstraet--A piston expansion tube in combination with Mie light scattering is used to investigate growth 
of monodispersed water droplets due to condensation of surrounding pure vapor. The droplets are 
generated by homogeneous nucleation from the vapor phase and are observed in the size range 1.6- 
14 x 10 -7 m "which lies in the transition regime around Knudsen number 1. A model bridging between 
molecular and continuous heat and mass transfer processes is formulated on the basis of the well-known 
three-layer concept (droplet-collision-free zone-continuum). It includes a uniform pressure hypothesis 
which saves using the complicated energy equation in the collision-free zone. Consistent agreement with 

experimental results is found when only a minor adjustment factor is used. 

1. INTRODUCTION 

Dropwise condensation of vapor in a carrier gas is 
more frequently encountered in technical and natural 
situations than dropwise condensation of pure vapor. 
The most prominent pure vapor case occurs in the 
rapid expansion of a steam turbine in which homo- 
geneous nucleation is induced followed by droplet 
growth. For the calculation of the steam flow as well 
as for the interaction of droplets with blades and walls, 
the growth rates are of great importance. Besides the 
application background the pure vapor case is an 
attractive one to study because it is not obscured by 
mass diffusion and other carrier gas effects. Such an 
elementary case is very useful in understanding con- 
densation, particularly when it takes place, as in this 
work, around Knudsen number 1, where a transition 
model of mass and heat transfer becomes necessary. 

The literature is :not short of theoretical studies on 
droplet condensation (e.g. refs [1, 2]). The ultimate 
goal of theoretical work is to solve Boltzmann's trans- 
port equation for the non-equilibrium condensation 
and evaporation ca,~es. Linearized equations assuming 
small deviations flom equilibrium are mostly used 
for practical calculations. Experimental verification of 
existing theory is rather scarce. The pure vapor case 
has been treated in a very general way by Young [3], 
referring to essenti~Ll references. For our present work 
we do not just use Young's equations because we were 
unable to apply them to our experiments satis- 
factorily. We formulate a working model simplified 
by: (i) a uniform pressure hypothesis which saves the 
treatment of the complicated energy equation in the 
molecular regime; (ii) a simple interpretation of the 
Schrage correction; and (iii) omitting the evaporation 

and condensation coefficients. From previous work 
[4] we think that these coefficients are either unity or 
at least very close to unity when the condensation 
surface is not contaminated, which is the case for 
droplets growing on homogeneous nuclei. Literature 
values vary widely and should always be seen in con- 
nection with the respective experimental conditions 
(compare Carey's [5] discussion). 

Our model provides a set of equations suitable for 
comparison with our experiments. The model needs 
only a slight correction factor to fit the experimental 
data. 

To our knowledge, no experimental work has been 
done on the pure vapor case in the transition regime. 
Our experimental approach is from the vapor/carrier 
system which we have studied extensively with a shock 
tube method [4]. There the gas dynamics of a shock 
tube is used to generate homogeneous nuclei serving 
as condensation sites in a supersaturated vapor/carrier 
atmosphere. Carrier gas experiments are easier to con- 
duct due to the higher involved total pressures. Pure 
vapor experiments require a different device which we 
call the piston expansion tube (pex-tube). Most of 
the measuring techniques around this tube have been 
developed in connection with the shock tube exper- 
iments so that this work relies heavily on the previous 
one. 

2. MODEL 

Consider first phase equilibrium between liquid and 
vapor at a flat surface [Fig.l(a)]. Both bulk phases 
are at rest and have uniform temperature and pres- 
sure. The pressure, called the equilibrium vapor pres- 
sure over a flat surface, Pc, is a known function of T. 
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A surface 
cp isobaric specific heat capacity 
d diameter 
h enthalpy 
k thermal conductivity 
ka Boltzmann constant 
L latent heat of condensation 
rh mass flux 
p pressure 

heat flux 
r radius 
R specific gas constant 
t time 
T temperature 
u bulk velocity 

N O M E N C L A T U R E  

v molecular velocity. 

Greek symbols 
fl impingement rate 
2 mean free path 
p density 
o surface tension. 

Subscripts 
d droplet 
e equilibrium 
i interface 
1 liquid 
m molecular 
v vapor. 

Kinetic theory of gases predicts that vapor molecules 
hit the surface at the rate 

/L - P° (1) 
x/2rtRT 

which is written in the dimension of the mass flux 
density, i.e. number of molecules times molecular 
mass per unit area and time. As mentioned in the 
Introduction, we work with a condensation coefficient 
of unity from the beginning. Therefore, the molecules 
condense at the rate tic. To maintain equilibrium the 
molecular fluxes to and from the surface must be 
equal, i.e. molecules escape from the liquid at the same 
rate as they condense. 

Let the condensation exceed evaporation and keep 
the surface stationary [Fig. 1 (b)], then the vapor of 
density Pv flows at the bulk velocity Uv towards the 
surface of area A where it condenses at the net rate 

= - p v u v A .  (Note the sign convention: negative 
means condensation. All equations apply equally well 
to condensation or evaporation.) Continuity requires 
that the liquid proceeds to the left at a correspondingly 
much smaller velocity. Since net condensation indi- 
cates deviation from phase equilibrium, either the tem- 
perature or the pressure or both must deviate from 
equilibrium values. In principle temperature and pres- 
sure gradients may act as driving potentials. 

Suppose the liquid conducts the heat of con- 

P. / / 1  T , P  e tl) 
/ / Y / A  

- -  tiquid :~_ vopor 

/ / / T  A - - [  T 
/ heat/ . ,7~.. .~ .~_~ ~ Pv b) 

/ / / / , , t - - I  u, g, 
Fig. 1. Three layer concept used for condensation modelling 

at a plane surface. 

densation very effectively, then the surface stays at T 
and thus also the vapor. The temperature is excluded 
as a driving potential and only the pressure of the 
bulk vapor differs from its equilibrium value. We use 
this idealization to contrast the droplet case below. 
The question now is how the net condensation rate 
depends on pressure. A bulk transfer equation involv- 
ing pressure does not exist in this situation. The 
answer lies in molecular transfer. Evaporating mol- 
ecules collide with vapor molecules about a mean free 
path away from the surface and vapor molecules com- 
ing from that distance reach the surface without colli- 
sion. Accordingly the layer between the surface and 
interface to the bulk vapor is called a collision-free 
zone. We consider the mass flux across any fixed plane 
between the fixed surface and the fixed interface. The 
evaporation flux, being based on the unchanged liquid 
temperature, remains the same, i.e. fleA. From the 
interface we have the impingement rate ft, and the flux 
flvA; however, this is not the total mass flux because 
the vapor molecules are released from a base which 
itself moves at u, causing the additional flux p'~u,A. 
Here p~ is the density of the incoming vapor molecules 
in the collision-free zone. The net condensation flux 
then becomes 

m = f lcA- f l ,  A--p'~uvA (2) 

or after inserting the corresponding fl and rearranging 

Pe Pv 

m = A x/zrtRT n/ZrcRT (3) 
p'v 

1 - - - -  
Pv 

If we are not too far from equilibrium the densities of 
incoming and outgoing molecules are approximately 
equal, so that pv = 2p~. Hence the net condensation 
rate is twice the rate obtained when only the impinge- 
ment rates are considered, which is the case in the 
Hertz-Knudsen model. The factor 2 is associated with 
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T= 300.75 K 
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Fig. 2. Model calculations for water of droplet temperature 
Td, interface temperature T~, mass flux density m/47tr~ and 
mass flux n~ as a function of droplet radius rd for a given 

vapor state (T, P0. 

Schrage [6]. In principle the factor is less than 2 
depending on m. Barrett and Clement [1] obtained 
1.7. 

In contrast to the plane surface case the droplet 
case exhibits two principal differences: 

(i) The heat of c, ondensation cannot be conducted 
away or transferred to a reservoir. The droplet has to 
give it off to the incoming vapor. A counterflow of 
heat and mass is established. Temperature will be a 
driving potential while pressure may be a driving 
potential. 

(ii) The plane surface one-dimensional geometry is 
replaced by a spherical one described by the radius 
originating in the center of the droplet. The bulk vapor 
flow outside the collision-free zone is a spherical sink 
flow with acceleration and a corresponding pressure 
drop. Inside the collision-free zone the incoming mol- 
ecules are not forced to proceed to the center. Not all 
of them hit the surface. Before evaluating the net 
condensation rate by molecular fluxes in analogy to 
the first case we need to deal with mass and heat 
transfer in the bull: vapor because the vapor state at 
the interface could .differ from the ambient state which 
we locate (in principle) at infinity, r ~ oo. 

To estimate the order of magnitude of the pressure 
drop between infinity and the interface we apply 
Bernoulli's law along a radial streamline using an 
average value for the density. Taking into account 
that u ~ 0 as r ~ co we obtain for the pressure drop 

Ap = ~p~ rT} " (4) 

The purely computational maximum of Ap is found 
by inserting values of the greatest mass flux density 
rh/4nr] (see Fig. 2:) and the smallest vapor density 

(0.01 kg m -a) while letting rdr i go to unity. It turns 
out that the pressure drop will not exceed 10 -2 mbar 
which is small in comparison with even the lowest 
involved vapor pressure (20 torr). Hence, we are deal- 
ing with a negligible error by assuming uniform bulk 
pressure, which in particular means Pi = Pv. 

The temperature distribution may be inferred from 
the energy equation which we write between infinity 
and the interface as 

rhhv + Qv = rhhi q- 0i- (5) 

We have already dropped the kinetic energy terms. At 
infinity the kinetic energy goes to zero and at the 
interface it turns out to be negligible in comparison 
with the enthalpy. Qi is the heat flux entering the bulk 
vapor at the interface. It is equal to the latent heat of 
condensation 

Oi = - r h L  (6) 

with a negative sign because heat and mass are 
counterflowing. Division of equation (5) by equation 
(6) yields 

cp (Tv_ ~) 0v-Q, ~- = Q~ (7) 

With the ratio of cp/L "~ 0.8 X l 0  - 3  K - 1  for water 
vapor the relative change of the heat flux (right side) 
would be below 1% at the highest expected tem- 
perature difference of 10 K. Accepting this error 
allows us to treat Q as a constant and to apply Fou- 
rier's law for a spherical system in the simplest form 

= -- 47zr 2 k~ r  T = const. (8) 

It provides a 1/r temperature distribution of the form 

T -  Tv ri (9) 
Ti-Tv  r 

and a corresponding heat flux 

= 4nkri(Ti - Tv). (10) 

Using equation (6) again yields the temperature mass 
flux relationship 

k 
rh = - 4 7 t z r i ( T i -  Tv). (11) 

We now write down the mass flux in the collision- 
free zone surrounding the droplet. Molecules are leav- 
ing the interface at the rate fli based on Pv and Ti. As 
mentioned before, not all of them hit the surface. The 
fraction which does and condenses is fli4nr~. The 
others cross the collision-free zone and re-enter the 
interface. As discussed in the plane surface case, these 
molecules come from a base which itself moves at a 
velocity uv producing the correction term p'~uv4xr~. 
The flux leaving the droplet is determined by the liquid 
temperature Td which we take to be uniform through- 
out the droplet due to its smallness. This flux fle4xr~ 
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equals the one that would enter the droplet if the 
droplet was at phase equilibrium with the vapor at the 
same temperature. It thus depends on the equilibrium 
vapor pressure po(Td) which is a function of Td. The 
resulting condensation mass flux is: 

m = fl~47rr 2 --p'vUv4~zr~ -fli47rr~, (12) 

and after division by the bulk flux at the interface 
rn = - pvu~4 nr 2 

m = 47zr 2 fl¢--fli 
Pv r2' 

Pv r 2 

(13) 

Again, not too far from equilibrium the density ratio 
is approximately 1/2. After insertion of fl we obtain 

(14) 

po(Td) Pi 

= 4nr~, x/27rRTa ~/2nRTi  

lr~, 
1 - - - -  

2 r 2 

Taking Tv,pv and the vapor properties as known quan- 
tities, there are two equations [equations (11) and 
(14)] for the three unknowns Ti, rh and Td. The 
additional equation would be the energy transfer 
equation for the collision-free zone which Young [3] 
obtained. Instead of that we use simple arguments 
concerning the pressure: (i) surface and interface pres- 
sures are equal; and (ii) the surface pressure is approxi- 
mately equal to the phase equilibrium vapor pressure 
corresponding to the droplet temperature. We sub- 
stantiate these arguments by interpreting the pressure 
as a momentum change of molecules as usual in gas 
kinetics. 

The free molecular fluxes exchanged between sur- 
face and interface do not change momentum, entailing 
no pressure difference. Hence surface and interface 
pressures are equal. The surface pressure Pd is rep- 
resented by the momentum change 

Pa = ~/ Or/6)[fleva + (fli +p'uv)/)i] 

or with equation (12) 

(15) 

(16) 

, [ 1  u i 1'~ 
= ) -  ~/(n/6) A~-2ui p~ 24(,~/6)#o~a~ ~ + ~ 4,~r~ 

where ~)i and Vd are mean velocities ~ / 3 R T  of con- 
densing and evaporating molecules, respectively. The 
factor of the bracket represents the equilibrium vapor 
pressure po(Td). We see that Pd--*Pc as vi--* Vd while 
rn --* 0. Being smaller than unity the term in brackets 
reduces Pd with respect to Pc, accounting for the fact 
that the incoming molecules have less momentum 
than the leaving ones. The second term has the 
opposite effect (note rn < 0) reflecting that more mass 
enters than leaves the droplet. These counteracting 

influences keep the deviation ofpa from po very small. 
A few pars pro mille are estimated for the exper- 
imental conditions. 

Regarding all this, Td is simply calculated from 
the equilibrium vapor pressure. This has to take into 
account that the equilibrium vapor pressure over a 
curved surface is greater than that over a fiat surface. 
Kelvin's equation provides the necessary correction in 
the form 

2o- 
pe(Td)  . . . .  d = pe(Td)nat e x p - -  (17) 

raplRTa 

whereby Penat is the equilibrium vapor pressure [7] 

Pe = exp(21.125-2.7246.10-2T+ 1.6853- 10-ST 2 

+ 2 . 4 5 7 6 " l n ( T ) - 6 0 9 4 . 4 6 4 2 / T ) .  (18) 

To sum up, we have obtained a set of equations [equa- 
tions (11), (14) and (17)] to calculate Ti, Td and m for 
the droplet case. The pressure plays a negligible role 
as a driving potential. This is due to the heat release 
from the droplet enforcing a temperature gradient 
(Td > T~) which at the same time acts as the driving 
potential for the mass transfer, as equation (14) makes 
clear. This is in contrast to the plane surface case 
where a temperature gradient is not enforced and the 
pressure drives the mass flux [equation (3)]. 

Some additional information is needed before equa- 
tions (11), (14) and (17) can be solved. The mean free 
path is used in the form 

kBTi 
2 x/(2)Trd~pv. (19) 

The latent heat of condensation 

L = 461.516094.4642 + 2.4576 To - 0.027246 T ] 

+3.3706" 1 0 - 5 ~ ] [ N m k g  -~] (20) 

is derived from Clausius-Clapeyron's equation, 
inserted into equation (18), while the heat con- 
ductivity k 

k = [7.341 • 10-3-1.013 • 10-ST+ 1.801 • 10-7T 2 

-9 .1"10  ~ lT3] [Wm-lK-~]  (21) 

is taken from Reid et al. [8], and the surface tension 
from Pruppacher and Klett [9] 

tr = 0.0761 -1.55" 10-4(T-273.15). (22) 

Figure 2 shows a computed example illustrating the 
development of various quantities vs radius. The 
initial conditions are fixed by the vapor temperature 
Tv = 284.4 K and the vapor pressure Pv = 27.7 torr 
corresponding to the supersaturation of S = 4.93. We 
start with nuclei which are in metastable equilibrium 
with the vapor, i.e. their temperature is Tv and their 
size is predicted by Kelvin's equation [equation (17)], 
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rd = 1.11 x 10 9 m. Growth starts with the addition 
of a single molecule. With the addition of mass latent 
heat has to be transferred causing Td to rise with rd. 
With growing radiu,; the curvature influence is relaxed 
and To approaches the fiat surface limit of 300.75 K. 

The interface temperature T~ indicates best the tran- 
sition between molecular and continuous transfer 
regimes which occ~ars around Knudsen number 1 
(Kn = 2/2rd). As long as the droplet is much smaller 
than the mean free path (Kn >> 1) the transferred heat 
is too small to require noticable temperature difference 
T~-Tv in the bulk vapor. As Kn ~ 0 an increasing 
T~--Tv is demanded. For big droplets the interface 
region practically disappears and T~ merges with the 
droplet temperature'.. 

The temperature courses are apt to explain the cul- 
minating behavior of the mass flux density in the con- 
text of equation (14;). With T~ constant and Td rising 
the mass flux density obviously increases. Then Td 
stagnates and T~ starts to grow, reversing the trend. 
The mass flux m itself may be approximated by a 
straight line in the double log scale. As a very crude 
estimate for the whole range m may be considered 
proportional to r 2. In connection with the law of mass 
conservation 

d r  d 
~, = - p~4nr 2 ~ -  (23) 

the radius would then grow linearly in time. 

3. EXPI'RIMENTAL METHOD 

Homogeneous nucleation in the supersaturated 
state of a vapor is an excellent way of producing small 
growing droplets which are evenly distributed in space 
and monodispersed. We have shown this before [4] 
when studying droplets in carrier gases by means of a 
shock tube experiment. Unfortunately, the shock tube 
is not suitable for pure vapors because the pressures 
involved are too low for flawless operation of the 
diaphragm. To circumvent this problem we developed 
the pex-tube featuring a piston instead of the 
diaphragm. A full analysis of the pex-tube with its 
capabilities will be published elsewhere. Here, we 
restrict ourselves to a concise description. 

The idea of the pex-tube is the following. An 
initially undersaturated vapor is subjected to a rapid 
expansion (a few milliseconds) ending at a super- 
saturated state. The degree of supersaturation cor- 
responds to a certain nucleation rate [4] and a certain 
nuclear size given by the Kelvin equation [equation 
(17)]. Maintaining ~Lhe supersaturated state for a short 
period, a defined number of nuclei come into exis- 
tence. The nucleation period is short (e.g. 0.3 ms) 
because the rate is high (e.g. 107 cm -3 S 1). The nuclei, 
practically born at an instant of time, grow into mono- 
dispersed droplets, the radius of which is measurable 
by Mie light scattering above 10 -7 m. 

Figure 3 shows how this is realized. The pex-tube is 
a closed system consisting of expansion and driver 
tube, buffer tank, filling bulb, vacuum pump and con- 
necting lines. The system's vapor pressure is moni- 
tored by a baratron and all system parts are tem- 
perature controlled by electrical heating. The whole 
system is evacuated prior to filling with water vapor 
to a desired initial pressure. The vapor escapes from 
the liquid surface in the filling bulb when exposed to 
the evacuated system. The expansion tube (70 mm 
inner diameter) is confined by the observation window 
at one end and the expansion piston at the opposite 
end. Before the experiment it is separated from the rest 
of the system by valves. Displacement of the piston 
enlarges the expansion tube entailing pressure and 
temperature drop of the enclosed vapor. We have 
shown that the expansion is isentropic so that a single 
parameter determines the gas state. This parameter is 
the volume given by the piston displacement measured 
by an array of light barriers. The expansion pressure 
is measured simultaneously by a piezo transducer. 

Vapor in front of the moving piston is discharged 
through a set of transfer ports into the exhaust cham- 
ber connected to the tank. Shortly before the piston 
comes to a stop it slides past another set of ports 
(recompression holes) releasing a small amount of 
vapor back into the expansion tube. This leads to a 
slight recompression following the end of the expan- 
sion. The nucleation period appears between the end 
of the expansion and the recompression. Besides the 
initial vapor pressure and temperature the state at 
nucleation is determined by the expansion ratio which 
is piston travel over tube length. Growth takes place 
at a slightly higher pressure and temperature after 
nucleation. 

The expansion piston is attached to a rod which 
leaves the closed system through a pack of seals and 
extends into the driver tube. Here it carries two more 
pistons, the driver and the brake piston. The first runs 
in the driver tube (100 mm inner diameter) with a 
small clearance. When the driver tube is closed off 
against the atmosphere by a Mylar diaphragm and 
loaded with pressurized air (up to 5 bars) the clearance 
guarantees equal pressures on both sides of the piston. 
Breaking of the diaphragm causes a pressure drop 
across the piston resulting in a driving force and accel- 
eration. The brake piston runs in its own tube with a 
built-in system of small damping ports (not shown) 
tuned to stop the three moving pistons exactly before 
the expansion piston hits the wall. 

The growing droplets are observed by Mie light 
scattering. To this end an argon-ion laser passes the 
expansion tube close to the end wall window. Scat- 
tered light is received by a photomultiplier in the direc- 
tion normal to the laser beam. The Mie signal identi- 
fies the droplet radius and by amplitude calibration 
yields the droplet number concentration at the same 
time. This system has been taken over from the pre- 
viously mentioned shock tube experiment [4] and 
needs no further explanation at this point. 
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Fig. 3. Sketch of the piston expansion tube. 

4. RESULTS A N D  C O M P A R I S O N  W I T H  M O D E L  

4.1. Measuring example 
Figure 4 gives a representative example of an exper- 

imental run providing traces of piston displacement, 
pressure and scattered light. The numbered steps of 
the piston displacement trace correspond to the light 
barriers, i.e. certain positions of the piston. From this 
information the expansion volume is inferred which 
converts into pressure and temperature of the 
nucleation period since we have an isentropic expan- 
sion. The pressure signal of the piezo transducer indi- 
cates the initial vapor pressure in the expansion tube 
(initial temperature TO. After the piston is set into 
motion the pressure drops in an expansion of 7.4 ms 
followed by the nucleation period of 0.4 ms and a 
slightly elevated pressure. It turned out that due to 
the low pressure level the pressure transducer signal 

became rather noisy and useless for quantitative 
evaluation. This concerns the after-nucleation state 
of growth which cannot be derived from the piston 
displacement since the piston stops and mass is added 
through the recompression ports. However, the ratio 
of growth pressure to nucleation pressure is inde- 
pendent of total pressure, which means that the ratio 
can be taken from an experiment at higher total pres- 
sure (e.g. with air) which has a reliable pressure signal. 
For example, for the present experiments the growth 
pressure is found by multiplying the nucleation pres- 
sure by 1.032. The same factor applies to the tem- 
perature jump via the equation of state because the 
added mass is very small compared with the total 
mass. 

The Mie scattering signal starts to rise straight after 
the nucleation period. In the course of time it exhibits 
peaks corresponding to certain radii of the scattering 

pr_ essure 8 ~ ~  \piston displocemenf 

(8T~'r9 r 1/*! 7 9 10 

11 /* 

' O.~,ms 3 

.~~ 65 K 

#R4/f Mie scoffering T2 = 28/*,97 K 

I I = 
0 7,8 I'lms) 

Fig. 4. Experimental run for water showing traces of pressure, piston displacement and scattered light. 
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Fig. 5. Comparison of experimental (crosses) and theoretical 
growth rates for water droplets. Top curve: plain model. 

Bottom curve: model with adjustment factor. 

droplets. The first peak identifies the radius 
1.61 × 10 -7 m. From calibration of the signal ampli- 
tude and the span of the nucleation period we con- 
clude that in this experiment we have a nucleation 
rate of 4 x 10 6 cm -3 s l corresponding to 1.6 droplets 
growing in a volume of 1 mm 3. After approximately 30 
ms the signal deteriorates. According to heat transfer 
calculations this is when the uniform temperature in 
the expansion tube begins to be heavily disturbed. 
Therefore heat transfer limits the observation time. 

With each run it has to be checked whether vapor 
depletion or the release of latent heat affects the 
growth state. Calculations show that they have neg- 
ligible influence for the present droplet sizes as long 
as less than 10 droplets are present in 1 mm 3 cor- 
responding to a nucleation rate 107 cm -3 s -l. 

4.2. Results 
Experimental results are on hand in terms of radius 

vs time plots ranging from 1.61 x l0 v m (first peak) 
to 1.4 × 10 -6 m. Each growth curve is fully determined 
by growth pressure Pv and temperature Tv. 

A direct check of' the model is best possible in terms 
of the growth rate which is the gradient of the radius 
vs time curve as shown in Fig. 5. The top curve rep- 
resents the gradient of equation (23) after evaluation 
of m through the other equations. Note that the gradient 
is the same as the mass flux density of Fig. 2 divided 
by the liquid density. The crosses are from the exper- 
imental data. We see that the model overpredicts the 
experimental growth rates by a factor of about 1.6. 
Looking for an explanation we have checked the 
influence of the properties involved, the Schrage cor- 
rection factor and the thickness of the collision-free 
zone which may not equal the mean free path. It 
turned out that the changes required to reconcile 
theory and experiment would be unreasonably large. 
The strongest influence comes from the difference of 
impingement rates in equation (14) in which the first 
term stands for evaporation and the second for con- 
densation. Under our experimental conditions the 

difference is small compared with the rates themselves, 
therefore a relatively small error in one of the rates 
has a great effect on the difference, i.e. the mass flux. 
One possible error is the already addressed deviation 
ofpo from Pd concerning the first term. Another pos- 
sible error is that the rate of the condensing molecules 
is in fact smaller than predicted. This can be accounted 
for by a condensation coefficient applied to the second 
term. In order to achieve agreement of the lower curve 
of Fig. 5 with experimental results we have either to 
increase the evaporation term by 1% or decrease the 
condensation term by 1%. Since the error cannot 
uniquely be attributed to condensation and since the 
correction is very small, a conclusion on the con- 
densation coefficient other than that it is very close to 
one is not possible. It seems very important that the 
model correction is slight and consists only of a factor 
applying to all of our data. 

The model representation of the r(t) curves requires 
integration of equation (23). Integration starts 
straight after nucleation at the beginning of the 
growth period. The droplet radius at this point must 
be at least the Kelvin radius as given by equation 
(17), otherwise the droplet would decay and not grow. 
Figure 6 displays three experimental runs in com- 
parison with the results of the integration. The agree- 
ment shows that the radius can be very well predicted 
as a function of time, although the integration covers 
two orders of magnitude of radius in the 'invisible' 
range before the first peak (dotted line). This may be 
considered as an indirect confirmation of the model 
in this range. 

Figure 7 shows the influence of vapor depletion and 
heat release for a case in which the nucleation rate 
and thus the droplet number concentration is such 
that it counts. We see that growth is increasingly over- 
predicted when vapor depletion and heat release are 
ignored. Also the pure vapor case is compared with a 
vapor in air case (top, from previous work [4]) at the 
same vapor conditions and nucleation rate. Evidently 
air makes growth much faster. The reason is the heat 
transfer which is considerably enhanced by the air 
molecules which impinge, thermally accommodate 
and reflect. The enhanced heat transfer obviously 
dominates vapor diffusion through the carrier because 
diffusion retards mass transfer resulting in slower 
growth. This example indicates that one has to be 
careful with the often quoted statement that droplet 
condensation is diffusion controlled. 

5. C O N C L U S I O N S  

We have successfully applied a new experimental 
technique, the pex-tube, to measure growth of mono- 
dispersed water droplets carried in pure water vapor. 
Vapor state and droplet size were selected such that 
the measurements could be taken in the transition 
regime about Knudsen number 1. 

An appropriate model has been derived including 
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Fig. 6. Comparison of experimental (symbols) and theoretical growth of water droplets. 

the classical Hertz-Knudsen expressions, a transition 
function with Schrage correction and a uniform pres- 
sure hypothesis. The latter means that ambient, inter- 
face and surface pressures are equal to the equilibrium 
vapor pressure corresponding to the droplet tem- 
perature. This allows the immediate determination of 
the droplet temperature from the ambient state saving 
the evaluation of the energy equation in the collision- 
free zone. The model is shown to agree with our exper- 
imental data over their entire range when a correction 
of 1% is applied either to the evaporation or to the 

condensation rate. In the first case the correction may 
be interpreted as a slight deviation from the pressure 
hypothesis. In the second case we could in principle 
refer to a condensation coefficient different from unity. 
However, the deviation is too small so that these 
experiments support what we have found before [4]: 
the condensation coefficient is either unity or very 
close to it when the condensation surface is clean, 
which seems to be the case for a droplet emanating 
from a homogeneous nucleus. The key feature of the 
present model is that it works with only a slight adjust- 
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Fig. 7. Water droplet growth in pure vapor (lower curves) and in a vapor/air mixture (upper curves) at 
higher number concentrations (nucleation rate > l0 s cm -3 s-l). Dashed curves: model predictions without 

vapor depletion and heat release. Solid curves: including both effects. 
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men t  factor  ra ther  than  a n u m b e r  of  coefficients which 
canno t  be de termined independent ly .  
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